
Package: hashprng (via r-universe)
July 11, 2024

Type Package

Title Hash-Based Matching Pseudo-Random Number Generation

Version 0.2.0.1000

Description Provides helper functions for use of hash-based matching
(HBM) for pseudo-random number generation (PRNG) in stochastic
simulations. HBM-PRNG is an approach to simplify matching
synthetic experiment samples, which ensures that matched runs
different only in the focal parameters, not in their chance
events.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

LinkingTo Rcpp

Imports Rcpp

Suggests data.table, ggplot2, hexSticker, knitr, parallel, rmarkdown,
roxygen2, spelling, sysfonts, testthat (>= 3.0.0), usethis

Config/Needs/website r-lib/pkgdown

Config/Needs/hexsticker hexSticker, sysfonts

Config/testthat/edition 3

VignetteBuilder knitr

Language en-US

Repository https://epinowcast.r-universe.dev

RemoteUrl https://github.com/epinowcast/hashprng

RemoteRef v0.2.0

RemoteSha 3c8c2ea5bc512d2ae8c79a26d1135e34b36a7ad1

1

2 hash_seed

Contents
hashprng . 2
hash_seed . 2

Index 4

hashprng hashprng: Hash-Based Matching Pseudo-Random Number Genera-
tion

Description

The hashprng package provides single function for use during stochastic simulation to streamline
salting + event hashing + reseeding the R random number generator. The sole function in the
package is hash_seed.

hash_seed Hash-Based Matching Pseudo-Random Number Generation

Description

Hash-Based Matching Pseudo-Random Number Generation

Usage

hash_seed(salt, ...)

hash_salt(salt, ...)

Arguments

salt the matching value for a particular collection of simulations

... distinguishing features to identify the event; see details.

Details

These functions provide convenient invocation for hash-based matching pseudo-random generation
(HBM-PRNG).

hash_seed uses a salt value along with distinguishing features of an event. Typically, salt dis-
tinguishes an overall sample simulation, but it can also be a temporarily computed value for events
that share some-but-not all features.

hash_salt computes a partial hash, for when several events need draws, but share a partially
consistent feature set. The result of hash_salt can for the consistent features can be computed
once, then provided to hash_seed along with remaining distinct features.

For matched stochastic simulation, we desire a few properties:

hash_seed 3

• the same random events are resolved consistently

• possibility of different stochastic samples

• reproducibility of pseudo-random simulations

Traditional PRNG seeding provides the latter points. To the extent that the PRNG is traversed
the same way across simulations, events will also be resolved consistently. However, once event
resolution leads to diverging outcomes (the whole point of doing otherwise-matched simulations
with some parameter varying), the overall trajectory of the simulation will be begin to exercise the
PRNG differently. When different events occur between the samples, this does not matter - one
random deviate is as good as another. However, diverging trajectories can still share some of the
same events. These events should be resolved consistently: for example, if a probabilistic threshold
is increasing across scenarios, then a particular event testing that should only change from pass to
fail. In practice, this means that same events need have the same PRNG draws, which is not possible
if the PRNG state has otherwise diverged due to other parts of the simulation.

The HBM PRNG approach encodes events such that when they are the same (as defined by the
simulation), they create identical hashes, which are then used to set the PRNG state. This ensure
the same subsequent draws for that event.

Examples

salt <- 8675309
evt <- list(type = "infection", from = 1, to = 2, time = 3.1)
evt2 <- list(type = "recovery", from = 1, to = 2, time = 3.1)
salt |> hash_seed(evt$type, evt$from, evtto, evttime)
print(runif(10))
print(runif(10))
salt |> hash_seed(evt$type, evt$from, evtto, evttime)
print(runif(10))
salt <- 42
salt |> hash_seed(evt$type, evt$from, evtto, evttime)
print(runif(10))

Index

hash_salt (hash_seed), 2
hash_seed, 2
hashprng, 2

4

	hashprng
	hash_seed
	Index

